Experimentally realizable devices for domain wall motion control

نویسندگان

  • Sergey Savel’ev
  • Alexander Rakhmanov
  • Franco Nori
چکیده

Magnetic domain walls (MDWs) can move when driven by an applied magnetic field. This motion is important for numerous devices, including magnetic recording read/write heads, transformers and magnetic sensors. A magnetic film, with a sawtooth profile, localizes MDWs in discrete positions at the narrowest parts of the film. We propose a controllable way to move these domain walls between these discrete locations by applying magnetic field pulses. In our proposal, each applied magnetic pulse can produce an increment or step-motion for an MDW. This could be used as a shift register. A similarly patterned magnetic film attached to a large magnetic element at one end of the film operates as an XOR logic gate. The asymmetric sawtooth profile can be used as a ratchet resulting in either oscillating or running MDW motion, when driven by an ac magnetic field. Near a threshold drive (bistable point) separating these two dynamical regimes (oscillating and running MDW), a weak signal encoded in very weak oscillations of the external magnetic field drastically changes the velocity spectrum, greatly amplifying the mixing harmonics. This effect can be used either to amplify or shift the frequency of a weak signal. New Journal of Physics 7 (2005) 82 PII: S1367-2630(05)92402-6 1367-2630/05/010082+11$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft 2 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimentally realizable devices for controlling the motion of magnetic flux quanta in anisotropic superconductors.

A new generation of microscopic ratchet systems is currently being developed for controlling the motion of electrons and fluxons, as well as for particle separation and electrophoresis. Virtually all of these use static spatially asymmetric potential energies to control transport properties. Here we propose completely new types of ratchet-like systems that do not require fixed spatially asymmet...

متن کامل

Synchronous precessional motion of multiple domain walls in a ferromagnetic nanowire by perpendicular field pulses

Magnetic storage and logic devices based on magnetic domain wall motion rely on the precise and synchronous displacement of multiple domain walls. The conventional approach using magnetic fields does not allow for the synchronous motion of multiple domains. As an alternative method, synchronous current-induced domain wall motion was studied, but the required high-current densities prevent wides...

متن کامل

In Situ Atom Scale Visualization of Domain Wall Dynamics in VO2 Insulator-Metal Phase Transition

A domain wall, as a device, can bring about a revolution in developing manipulation of semiconductor heterostructures devices at the atom scale. However, it is a challenge for these new devices to control domain wall motion through insulator-metal transition of correlated-electron materials. To fully understand and harness this motion, it requires visualization of domain wall dynamics in real s...

متن کامل

Employing Internal Flexible Wall as Mass Absorber in Tanks Subjected to Harmonic Excitations

The possibility of employing internal wall as mass absorber in rectangular water storage tanks subjected to harmonic ground motion excitation is investigated in this paper. Internal walls are used in these tanks usually for service performance purposes, which could be used as mass absorber to control seismic demand on tank's exterior walls. Derivation of the response of the coupled system inclu...

متن کامل

Co oling a nanomechanical resonator using feedback: toward quantum behavior

Nano-electro-mechanical devices are now rapidly approaching the point where it will be possible to observe quantum mechanical behavior. However, for such behavior to be visible it is necessary to reduce the thermal motion of these devices down to temperatures in the millikelvin range. Here we consider the use of feedback control for this purpose. We analyze an experimentally realizable situatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005